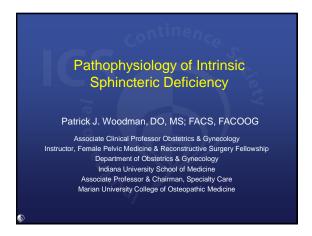
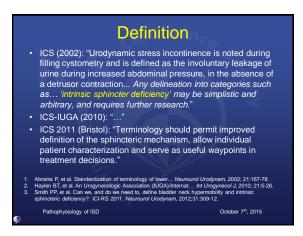


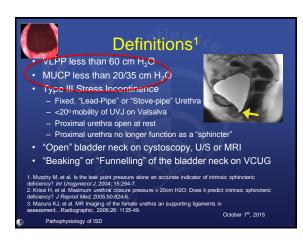
W20: Intrinsic Sphincteric Deficiency, Diagnosis and Management

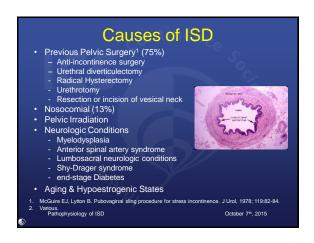
Workshop Chair: Sherif Mourad, Egypt 07 October 2015 14:00 - 17:00

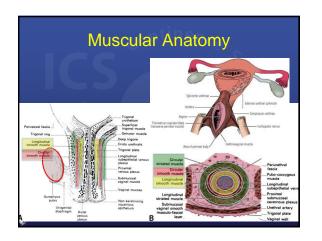

Start	End	Topic	Speakers
14:00	14:05	Introduction	Sherif Mourad
14:05	14:20	Pathophysiology of ISD	Patrick Woodman
14:20	14:35	Diagnostic Measures	Ervin Kocjancic
14:35	14:50	Urodynamics for ISD	Sherif Mourad
14:50	15:05	Conservative Management	Maura Seleme
15:05	15:20	Integral Theory Approach to ISD	Rogério de Fraga
15:20	15:30	Discussion	All
15:30	16:00	Break	None
16:00	16:15	Injectable Bulking Agents	Sherif Mourad
16:15	16:30	Inflatable Balloons # AS	Ervin Kocjancic
16:30	16:45	Slings for Female ISD	Patrick Woodman
16:45	17:00	Slings for Male ISD	Rogério de Fraga

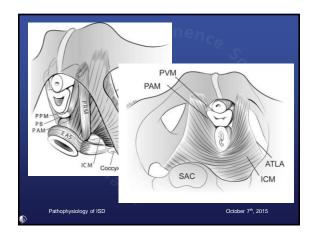
Aims of course/workshop

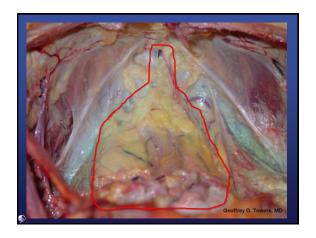

The aims and objectives are: giving a broad review of the diagnostic tools and measures to help identify Intrinsic Sphincteric Deficiency and to evaluate the degree of sphincteric weakness. The audience will be able to understand better how to decide upon the suitable mode of treatment for such cases according to the etiology and whether there is a concomitant lesion or not.

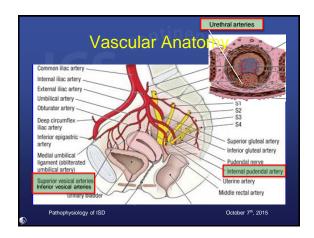

Learning Objectives

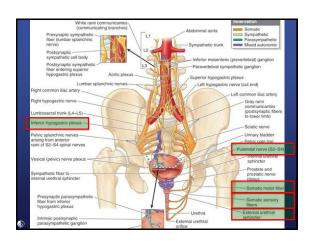

- 1. To provide a range of knowledge about refractory overactive bladder syndrome.
- 2. Discussion about difficult cases of lower urinary tract reconstruction including vesicovaginal fistula.
- 3. Controversial of female urology and pelvic organ prolapse will be discussed.

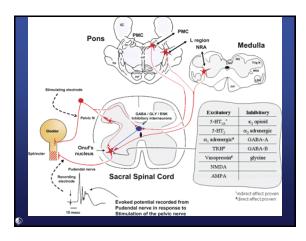


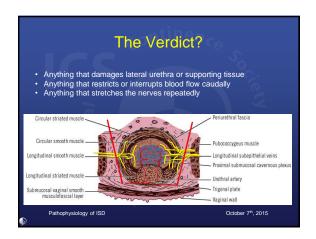


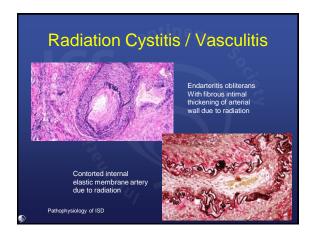


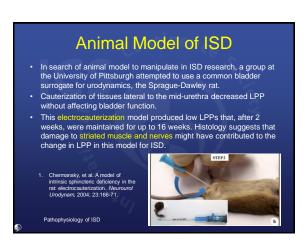


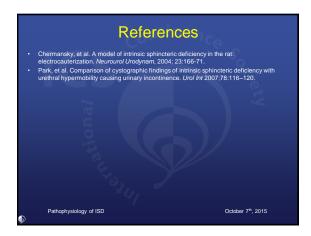












Pavilla, GW, et al. Pelvic floor dysfunction management practice patterns: a survey of members of the International Urogynecological Association. Int Urogynecol J, 2002;13:319-25. Abrams P, et al. Standardization of terminology of lower urinary tract function. Neurourol Urodynam, 2002; 21:167-78. Haylen BT, et al. An Urogynecologic Association (IUGA)/International Continence Society (ICS) joint report on the terminology for female pelvic floor dysfunction. Int Urogynecol J, 2010; 21:5-26. Smith PP, et al. Can we, and do we need to, define bladder neck hypermobility and intrinsic sphincteric deficiency?: ICI-RS 2011. Neurourol Urodynam, 2012;31:309-12. Murphy M, et al. Is the leak point pressure alone an accurate indicator of intrinsic sphincteric deficiency? Int Urogynecol. J, 2004; 15:294-7. Krissi H, et al. Maximum urethral closure pressure < 20cm H2O: Does it predict intrinsic sphincteric deficiency? J Reprod Med, 2005;50:824-8. Macura KJ, et al. MR Imaging of the female urethra an supporting ligaments in assessment... Radiographic, 2006;26: 1135-49. McGuire EJ, Lytton B. Pubovaginal sling procedure for stress incontinence. J Urol, 1978; 119:82-84. Pathophysiology of ISD

Adjustable Continence Therapy (ACT)

Ervin KOCJANCIC MD1;

Intrinsic Sphincter Deficiency represents a challenge in the treatment of Urodynamic Stress Urinary Incontinence (SUI). Diagnosis of Intrinsic Sphincter Deficiency (ISD) should address urethral elements, including pudendal innervation; striated sphincter mass and function; urethral smooth muscle, mucosa and submucosal cushions. Treatment should be focused on increasing urethral resistance. In patients with severe ISD creating an adequate intrinsic urethral resistance might be more beneficial than the correction of urethral hypermobility, which in itself may not result in stress urinary incontinence. Even if corrective surgery provides initial improvement; when factors affecting continence change, eg weight fluctuation and estrogen changes, there may be a need for secondary or even tertiary surgical intervention over time. Indeed, if no benefit was first achieved, a further alternative surgical option should ideally be considered. Given these parameters, we decided to assess the safety and efficacy of an implantable device, the Adjustable Continence Therapy (ACT®) which could be titrated over time as required in a group of women with recurrent stress urinary incontinence.

The ACT device:

The Adjustable Continence Therapy was developed by Uromedica, Inc. (Plymouth, MN). The device consists of two silicone elastomer balloons on each side of the proximal urethra with each connected via a conduit to a titanium port buried superficially in the fatty tissue of the labia majora. Placement of the balloons at either side of the bladder neck is achieved using two specially designed reusable blunt and sharp trocars and a U shaped cannula. There are 4 different device lengths; 6, 7, 8 and 9cm, which equates to the distance from bladder neck to skin with an additional 3-4cm for burial of the port.

Each balloon has a recommended maximum volume of 8cc. At any time post operatively, each balloon can be volumetrically increased or decreased by percutaneous injection through the port using a 23G Huber non coring needle in order to achieve optimum continence.

Surgical Procedure:

The procedure can be performed using general, regional or local anaesthesia, based on patients' needs and physician discretion. The patient is placed in standard lithotomy position and the bladder is filled with 100 ml of dilute contrast through a 16Fr Foley catheter. The balloon of the catheter is filled with 10cc of pure contrast to enable fluoroscopic visualisation of the bladder neck. Bilateral 1cm small incisions are made in the Labial Sulcus at the level of vaginal introitus below the urethral meatus. Using fluoroscopic guidance and digital vaginal palpation, a sharp trocar loadedin a U shaped cannula is directed through the incision, perforating the pelvic diaphragm towards the bladder neck parallel to the proximal urethra anterior to the vagina. A blunt trocar may be employed to reduce the risk of urethral or bladder perforation. Once the tip of the trocar is at the bladder neck, the trocar is withdrawn and incremental markers along its shaft used to measure the required length of device to be implanted. The trocar is removed completely leaving the U shaped cannula in place. The ACT device is then inserted into the U shaped cannula using a pre loaded guide wire as a pusher. Once the correct position is confirmed on the image intensification screen, the balloon is filled with 1-1.5cc of isotonic contrast solution to stabilise its position, and the process is repeated on the contralateral side. The guide wire and U shaped cannula are removed after a fluoroscopic check. The ports are buried in the labia majora in a superior ventral position and the incision closed in two layers. A 16Fr urethral catheter remains in situ overnight as a precautionary measure. At our institution, we soak the devices in an

antibiotic solution before insertion and prescribe preoperative antibiotics consisting of 160mg Gentamycin and a post operative course of oral Ciprofloxacin 500mg once a day for 5 days as a prophylactic measure. First balloon adjustments may be conducted at 4-6 weeks to allow for creation of a pseudo capsule to occur around the balloon. Subsequent increments should be spaced with a minimum of 4-week intervals and continued until optimum continence has been achieved. A maximum of 1ml of isotonic solution should be inflated per balloon at each visit to avoid splitting of the pseudo capsule and increasing the risk of possible balloon erosion and migration.

From May 2001 until May 2006, 57 patients (mean age 62.59 years, (range 18-86 years) were enrolled, implanted with the Adjustable Continence Therapy device and evaluated post operatively with a minimum of 12 months follow up. A number of patients were treated prior to this date but not included in this evaluation due to the use of an earlier generation device, and the learning curve required for such an innovative procedure. Mean follow up was 72 months (range 12-84) with a median follow up of 58 months All patients had undergone at least one previous pelvic surgery. Twenty seven patients had undergone one or more anti incontinence surgical procedures including Burch colposuspension; injectable bulking agents (Collagen, Macroplastique, Zuidex), Pubo Vaginal slings or tensionless tapes (TVT, TOT). No statistically significant differences were found between the different groups of each previous intervention. Six patients had also previously undergone prolapse repair. Nineteen (33.3%) patients had coexistent grade I prolapse which did not require concomitant surgical intervention. Mean duration of incontinence since failure of previous surgical treatment was 1.74 years (range 1-5 years). Twenty nine patients (50.9%) were obese (a BMI of \geq 35) at time of surgery. Operative time was 20.3 mins (range 10-30 mins) with a blood loss of <50mls in all cases. Fourteen (24.6)% patients underwent implantation utilising local anaesthesia comprising

of 10mls per side 4% Bupivacaine and 1% lidocaine; 37 (64.9)% required spinal anaesthesia whilst 5 (8.8%) underwent general anaesthesia. Screening time for verification of balloon positioning using image intensification was 2.03 mins (range 1-3.6 mins

devices. Intra operatively, bladder perforations occurred in 2 patients, visualised by leakage of contrast from the bladder through the cannula and on fluoroscopic image. On each occasion, the trocar and cannula were removed, repositioned via a more lateral access and balloons inserted. In these 2 patients, the urethral catheter was retained for 48 hours. No further post operative sequale resulted. All other patients were able to void following catheter removal within 24 hours with no post void residual detectable on ultrasound. No postoperative analgesia was required and all patients were discharged within 24 hours of surgery.

There was a statistically significant improvement in Quality of Life based on I-QoL from 27.2 at baseline at each of the post operative evaluation points (p=<0.001). Pad count significantly decreased from 5.6 at baseline to 1.24 at 12 months which was maintained over time (Table 1). Patient self perception reported on Visual Analogue Score improved by 50% within 3 months and continued to improve over time as further adjustments improved continence

Postoperative adjustments were performed if incontinence persisted or recurred, or until optimum continence had been achieved. Eighteen patients (31.6%) did not require any postoperative adjustments. The remainder (68.4%) required singular or multiple adjustments range (1 -11) during the course of 6 years demonstrating the ability to titrate the ACT balloons long term.

Postoperative Urodynamics performed at 12 months was available on 30 patients and showed a statistically significant increase in VLPP from a mean value at base line of 48.18 cm H_2O +/- 24.38 to 86.0 cm H_2O +/-21.44. (p<0.01). However, there were no

statistically significant changes observed in the Maximum Urethral Closure Pressure following surgery (47.39 cm H2O +/- 24.35 at baseline compared to 51.06 +/- 19.31 post operatively).

Complications.

Labial haematomas were observed in 3 pre menopausal patients within 24 hours of implantation. The haematomas spontaneously reabsorbed without intervention and presumably resulted from inadvertent damage by the trocar to the vestibular bulb⁶. On questioning, none of these patients reported any deterioration in sexual function post operatively.

Postoperative complications necessitating device removal included migration seen in 8/57 patients (14.1%) and urethral erosion in 2/57 (3.5%) patients. Additionally, 5 balloons were explanted due to device failure. Of these, 1 balloon containing 5.5cc deflated after one month. The other two balloons failed at 3 years, one containing 6cc and the other with 2cc. In total, 15/114 balloons (13.2%) were removed in 12 patients with only 3 patients requiring bilateral removal. Removal was performed in the outpatient office utilising topical anaesthesia only. A small incision was made over the port, the port grasped with forceps, the balloon deflated and the device was easily retrieved using a simple grasping technique. Five replacement balloons were implanted in in 5 patients 6 weeks after removal. Two out of 5 patients became dry (no pads), 2 were significantly improved (< 1 pad a day) and 1 was unchanged.

Two (3.5%) patients had portal erosions occurring within a few days of implantation resulting from placement of the port directly inferior to the incision. The ports were cleaned with antibiotic flush, repositioned and the incision was resutured without any further problem. Had there been any question of infection associated with the erosion, the balloons would have been explanted and new balloons reimplanted at a later date.

The reported positive outcomes of tensionless tapes for the treatment of female stress urinary incontinence¹⁴ has given rise to a larger number of patients undergoing this procedure performed by an increasing number of surgeons across a number of Recent literature reviews suggest a dichotomy between patient specialities. satisfaction and dry rates with one study comparing a number of different commercially available slings indicating that dry rates range between 36.1% and 45.2%. This would suggest that there is a proportion of women who may require further intervention for treatment of their persistent incontinence, and for whom an alternative treatment option should be offered. Bulking agents provide relatively non invasive methods of treatment of stress urinary incontinence. Short term data suggests a cure rate of 59% and additional improvement rate of 16% at 12 months. Longer term results suggest a greater decline in success rates than retropubic suspension and sling procedures. Although the exact mechanism of placement of periurethral injectables has not been defined, an obstructive effect has been described which supports the entire wall, thereby increasing urethral resistance, albeit in the short tems. In our experience ACT results have not declined over time. Figure 2 demonstrates the different effects created. There may be a number of reasons why the ACT appears to be of benefit. Primarily, because continence is not a static state in women whose anatomy may alter due to weight fluctuation, estrogen changes, aging and unassociated surgery, the opportunity to post operatively regulate the urethral resistance is very beneficial to patient and physician. Secondly, 47.4% of the patients in this group had failed previous anti incontinence surgery thus reducing the likelihood of success of further surgery; and thirdly the ability to perform a titratable procedure which can easily be reversed without sequelae if necessary is very attractive and contrasts to the removal of other prosthetic devices implanted for the treatment of SUI.

Conclusion:

Dealing with failed incontinence surgery and recurrent stress urinary incontinence has

enormous social implications for the patient and represents a big surgical challenge for

the physician.

Whilst our findings were encouraging particularly in terms of patients subjective

outcomes, our study was limited in terms of the numbers of patients treated over the

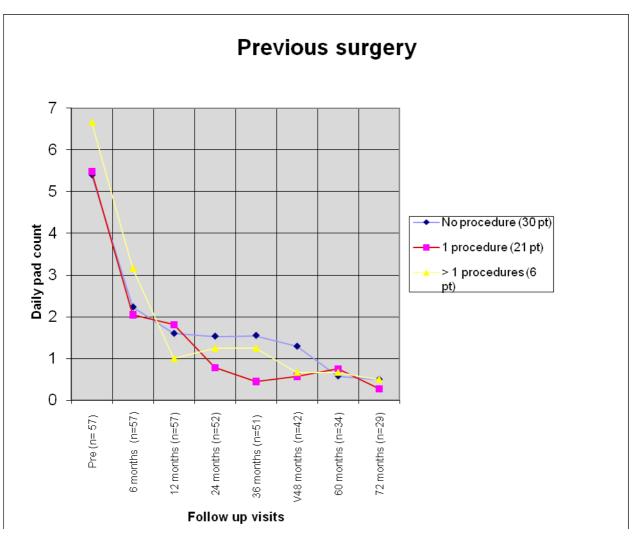
time period; the modification in procedural technique and the lack of more objective

data. There is a need to conduct further study to establish the actual mechanism of

action of the ACT in previous surgical failures, and to more closely monitor objective

outcomes in the light of procedural and post operative management. We will continue

to follow up our patients and await the results of other international studies to confirm


whether these promising results can be replicated.

List of Figures:

Figure 1- Prior anti pelvic/ incontinence surgery

List of Tables:

Table 1- Results showing Quality of Life, Pad Count and Patient Global Impression Index.

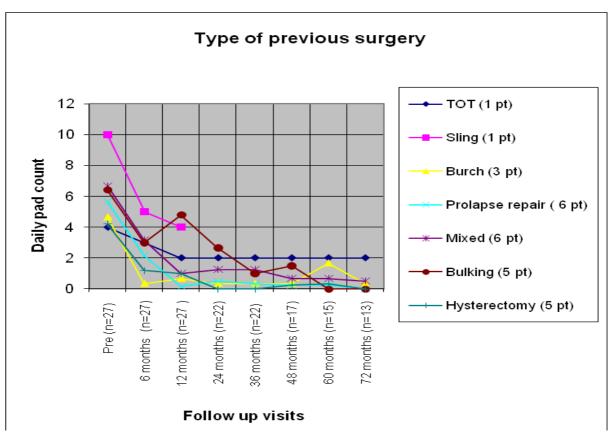


Table 1.

	Baseline (n=57)	12 Month (n=52)	24 Month (n=52)	36 Month (n=51)	48 Month (n=41)	60 Month (n=34)	72 Month (n=29)
IQo	27.2	65.9	70.4	70.4	76.1	78.4	78.6
	(SD 15)	(SD 17)	(SD 16)	(SD 16)	(SD 17)	(SD 17)	(SD 18)
L							
Pad	5.6 (SD 2.28)	1.61 (SD 2.10)	1.24 (SD 1.45)	1.14 (SD 1.84)	1 (SD 1.72)	0.65 (SD 1.10)	0.41 (SD 0.78)
Usage	(0= =:=0)	(0 = = : : 0)	(======	(== ::= :)	(0)	(0=)	(02 011 0)
PGI		2.33 (SD 1.04)	1.98 (SD 0.92)	1.78 (SD 0.86)	1.88 (SD 1.29)	1.76 (SD 1.0)	1.62 (SD 0.94)

Suggested reading:

- 1.Blavis JG, Olsson CA. Stress Incontinence Classification and Surgical Approach. J Urol 1988: 139(4): 727-731.
- 2. Koelbl H, Mostwin J, Boiteux JP, Macarak E, Schafer W, Yamaguchi O, Incontinence-Pathophysiology: 224-225.
- 3. Pope C, Shaw J, et al. Changes in bladder function following a surgical altercation in outflow resistance. Neurology and Urodynamics **1990** 9: 503-508.
- 4. Kocjancic E, Crivellaro S, Ranzoni S, Frea B: Use of the Adjustable Continence Therapy for the treatment of recurrent female urodynamic stress urinary incontinence. JOURNAL OF ENDOUROLOGY Volume 22, Number 7, July 2008
- 5. Wachter J, Henning A, Roehlich M, Marszalek M, Rauchenwald M, Madersbacher S. Adjustable Continence Therapy for Female Urinary Incontinence: A Minimally Invasive Option for the Difficult Case. *Urologia Internationalis* (in press)
- 6. Chartier-Kastler E, Costa P, Ben Naoum K, Cour F, Le Normand L, Haab F. French multicentre prospective study of the use of ACT balloons. *Prog Urol*.17(7):1372, 2007.
- 7. Trigo-Rocha F, Gomes CM, Pompeo ACL, Lucon AM, Arap S. Prospective study evaluating efficacy and safety of adjustable continence therapy (proAct) for post radical prostatectomy urinary incontinence. *J Urol* 2006; **67**: 965-969
- 8. Hubner WA, Schlarp OM. Adjustable Continence Therapy (ProACT(TM):Evolution of the Surgical Technique and Comparison of the Original 50 Patients with the Most Recent 50 Patients at a Single Centre. *Eur Urol* 2007; **53(3)**: 680-6
- 9. Kocjancic E, Crivellaro S, Ranzoni S, Bonvini D, Gontero P, Frea B.Adjustable Continence Therapy for the treatment of male stress urinary incontinence: A single-centre study. *Scan J Urol Nephrol* 2007; **41**: 324-328
- 10. Lebret T, Cour F, Benchetrit J, Grise P, Bernstein J, Delaporte V, Chartier Kastler E, Botto H, Costa P. Treatment of Post prostatectomy Stress urinary incontinence using a

- minimally invasive Adjustable Continence Balloon device ProACT: Results of a Preliminary, Multicenter Pilot study. Urology 2007; 71(2):256-260
- 11. Lane, T.M. and Shah P.J.: Leak-point pressures. BJU Int. 86: 942, 2000
- I2. McGuire E; Urethral Bulking Agents: Nature Clinical Practice Urology, 2006; 3(5):234-235
- 13. Wagner TH, Patrick DL, Bavendam T, Martin M, Buesching D. Quality of Life of people with urinary incontinence; development of a new measure. Urology 1996: 1: 67-72.
- 14. Ulmsten U, Falconer C, Johnson P, Jomaa M, Lanner L, Nilsson CG, Olsson I. A Multicenter Study of Tension- Free Vaginal Tape (TVT) for Surgical Treatment of Stress Urinary Incontinence. Int Urogynaecol J 1998: 9:210-213
- 15. Kobashi K, Govier F. The completely dry rate: A critical re-evaluation of the Outcomes of Slings. Neurourology and Urodynamics 2005: **24**:602 -605
- 16. Koelbl H, Saz V, Doerfler D, Haeusler G, Sam C, Hanzal E. Transurethral injection of silicone microimplants for intrinsic urethral sphincter deficiency. Obstet Gynecol 1998: **92**:332-336.
- 17. Smith T, Daneshgari F, Dmochhowski R, Ghonheim G, Jarvis G, Nitti V, Paraiso M. Surgical treatment of incontinence in women. Incontinence 2002.2nd Edition: Health Publications Ltd, 833-835
- 18. Dolan L and Hilton P: Surgical management of stress incontinence: which technique when? EAU Update Series. 1: 154-65, 2003.
- 19. Hubner WA, Schlarp OM. Treatment of Incontinence after Prostatectomy using a new minimally invasive device: adjustable continence therapy. BJU International 2005: **96**: 587-594.
- 20. O'Connell HE, Kalavampara V.S, Frea B, Robertson P, Kocjancic E. Cadaveric Study of ACT Balloons And Their Impact On Female Sexual Anatomy. Pelviperineology 26:53, 2007
- 21. Stecco A, Saponaro A, Crivellaro S, Raffaele Cotroneo A, Frea B, Carriero A, Kocjancic E; Can MRI Predict which patients are most likely to benefit from percutaneous positioning of volume adjustable balloon devices? Urologia Internationalis; (2006): 76: 240-246.

Bulking Agents in Intrinsic Sphincteric Deficiency

Sherif Mourad, MD

Professor of Urology, Ain Shams University, Cairo President of Pan Arab Continence Society

Urinary incontinence following radical prostatectomy has a reported incidence of 5 to 12% [1]. Post-prostatectomy incontinence and other forms of male urinary incontinence have a significantly negative impact on Quality of Life. Urethral incompetence usually requires interventional therapy. Treatment of ISD in men after radical prostatectomy is a technically challenging procedure.

Surgical augmentation of intraurethral pressure includes slings and implants, such as artificial sphincters or periurethral bulking agents. The latter involves injection of a bulking agent at the area of the bladder neck and proximal urethra to enhance urethral resistance to urine flow by approximating the urethral mucosa.

The artificial urinary sphincter is a known effective solution in managing ISD. However, it carries the risk of disturbed bladder compliance and function to a degree that may affect the upper urinary tract. Moreover, there is the possibility of urethral erosion, especially in patients with a history of difficult pelvic operation and/or significant blood loss.

Complications such as infections and mechanical problems, requiring revisions are additional disadvantages. The sling operation is proving to be technically difficult in males, especially after radical pelvic surgery. Extensive fibrosis associated with male incontinence after surgery or trauma, and pelvic irradiation after radical prostatectomy further complicates the procedure, therefore, it is rarely performed.

Alternatively, injection or placement of a bulking agent has the advantages of being easily performed as an outpatient procedure because of the use of local anesthesia and a low complication rate, which makes it suitable especially in the elderly incontinent population.

Stress Urinary Incontinence (SUI), which is the involuntary loss of urine during stressful activities, develops in 10 to 30% of women of all ages [2]. In women, two types of sphincter abnormality are diagnosed,

bladder neck hypermobility and Intrinsic Sphincter Deficiency (ISD). ISD may account for a higher failure rate of surgical procedures performed to treat Stress Urinary Incontinence (SUI) due to ISD.

Historically, slings have been the procedure of choice, however this procedure may increase and/or produce a significant incidence of urinary retention. Peri-urethral or trans-urethral bulking agents, which are less invasive, have been used to treat ISD for many years and avoid recurrent surgical procedures. Bulking agents are able to coapt the urethral mucosa and as a consequence produce higher resistance to increased abdominal pressure.

Injection of bulking agents into the urethral wall has been attempted with a variety of substances. The materials used to date have a wide range of success rates. The following are the so far studied agents:

Resorbable

Animal Origin - Bovine Glutaraldehyde Cross Linked Collagen

Human Origin - Fat

Chondrocytes (cell cultured, Reprogenesis Inc.)

Non-resorbable

Polytetrafluoroethylene (Teflon)

Silicone microimplants (Macroplastique)

Carbon particles (Durasphere)

Dextranomer and stabilized Hyaluronic acid (Zuidex)

Polyacrilamide Hydrogel (Aquamid)

Ethylene Vinyl Alcohol in Dimethyl Sulfoxide (Tegress)

Inflatable Silicon Balloons (ACT & ProACT)

Good results were reported with the use of polytetrafluoroethylene (PTFE) in the 1960s and 1970s [3]. PTFE (Teflon) paste consists of particles that vary in size from 1 to 100 μ m, with 90% smaller than 40 μ m, resulting in distant migration and granuloma formation [4]. The long-term results have been disappointing, Kiilholma and Mäkinen reported that only 18% of patients were continent 5 years after polytetrafluoroethylene injection [5].

Collagen (Contigen) is expensive and may cause allergic reactions in around 3% of patients. In most studies incontinence returned gradually with a median continence duration of 23 months [6]. Repeat injections are necessary to achieve sustained continence, which increases the cost.

The main disadvantages of using autologous fat relate to the variability of resorbtion as well as repeated injections. At 1-year follow-up only 28% of patients are cured with this therapy [7].

Numerous reports on PDMS for the treatment of female SUI have been published [8]. Encouraging results are reported in these studies, including 1 with over 5-year follow-up.

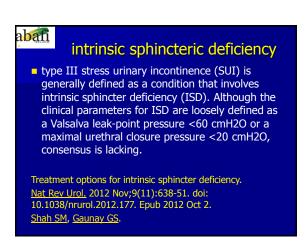
The Dextranomer is a type of sugar molecule that has been used for a number of years in the treatment of wounds. Hyaluronic acid is a naturally occurring substance produced by the body to firm tissues and lubricate joints. The hyaluronic acid used in ZUIDEX is synthetically produced. Neither of the ingredients in ZUIDEX gel is derived from animals, thus avoiding rejection risks that exist with animal-based products.

Aquamid is a Polyacrilamide hydrogel which is an atoxic, non-resorbable sterile watery gel. It is homogeneous, stable, not biodegradable, and has tissue-like viscosity and elasticity [9].

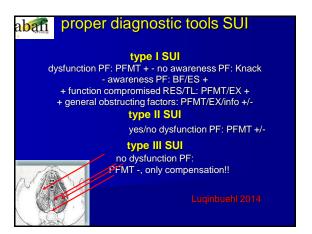
Tegress is Ethylene Vinyl Alcohol copolymer (EVOH) dissolved in Dimethyl Sulfoxide (DMSO) carrier. Upon injection, the DMSO carrier rapidly dissipates from the EVOH copolymer, forming a ccohosive, spongy mass that serves to bulk surrounding tissue. Long term results are not available.

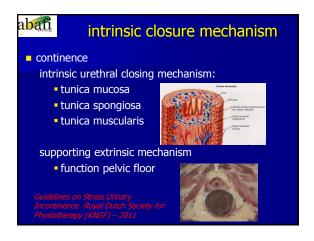
The ACT Device consists of two small implantable balloons. During a short procedure, the balloons are surgically placed under the skin next to the bladder. ACT Therapy has been used in more than 1,000 women in Europe, Canada and Australia. It is currently being studied in the United States in a Food and Drug Administration clinical study. Results of a previous study suggest that after a mean follow-up of 36 months, 62% of patients were dry and another 16% were much improved [10].

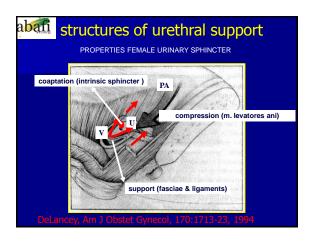
The use of bulking agents is a good, safe and effective alternative for the treatment of intrinsic sphincter deficiency in male and female patients. Although having lower efficacy than other surgical procedures, represent an alternative minimally invasive approach and may be particularly suited to those who have recurrent urodynamic stress incontinence following previous surgery.

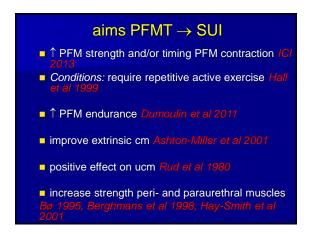

References

- 1- Steiner MS, Morton RA, Walsh PC: Impact of anatomical radical prostatectomy on urinary continence. J Urol 1991;145:512
- 2- Thomas TM, Plymat KR, Blannin J, Meade TW: Prevalence of urinary incontinence. Br Med J 1980;281:1243
- 3- Politano VA, Small MP, Harper JM, Lynne CM: Periurethral Teflon injection for urinary incontinence. J Urol 1974;111:180
- 4- Buckley JF, Lingham K, Meddings RN, Scott R, Kirk D, Deane R, Kyle K: Injectable Teflon paste for female stress incontinence: long-term followup and results. J Urol 1994;part 2,151:418A,abstract 764
- 5- Kiilholma P, Mäkinen J: Disappointing effect of endoscopic Teflon injection for female stress incontinence. Eur Urol 1991;20:197
- 6- Herschorn S, Steele DJ, Radomski SB: Followup of intraurethral collagen for female stress urinary incontinence. J Urol 1996;156:1305
- 7- Blaivas JG, Heritz D, Santarosa RP, Dmochowski R, Ganabathi K, Roskamp D, Leach G: Periurethral fat injection for sphincteric incontinence in women. J Urol 1994;part 2,151: 419A, abstract 765
- 8- Koelbl H, Saz V, Doerfler D Haeusler G, Sam C, Hanzal E: Transurethral injection of silicone microimplants for intrinsic urethral sphincter deficiency. Obstet Gynecol 1998;92:332
- 9- von Buelow S, von Heimburg D, Paflua N. Efficacy and Safety of polyacrilamide hydrogel for facial soft-tissue augmentation. Plast. Reconstr. Surg 2005; 116: 1137-46
- 10- Kocjancic E, Carone R, Bodo G, et al. 36 Month Follow-up with Adjustable Continence Therapy (ACT) in Female Stress Incontinence Due to Intrinsic Sphincter Deficiency (ISD) [abstract]. Taken from: International Continence Society (Montreal). 2005;624.







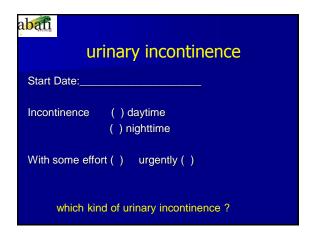


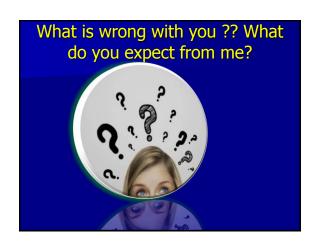
assessment: history taking

associated pathology - diabetes, obesity,lower back pain,SDT - sexually transmitted disease, depression, neurological disease, medications

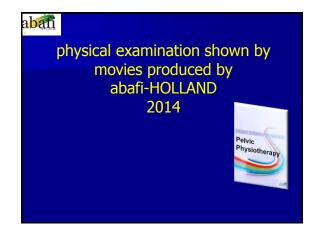
urogynecology -age of sexual initiation,infection, menopause)

anorectal - constipation, hemorrhoids, anal incontinence


surgery? - hysterectomy. prolapses


obstetric history - episiotomy; vaginal delivery, baby weight

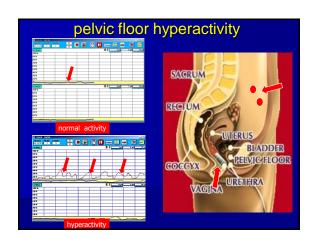
urinary behavior


Frequency:
day:_____ night:____

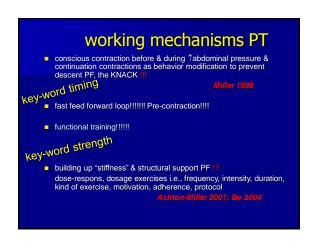
() dysuria () abdominal strength
() difficulty to control urine
() urgency () pain
() burning feeling

pelvic floor dysfunction should be classified according to "ICS Standartisation"

By palpation of the pelvic floor muscles, the contraction and relaxation are qualified:

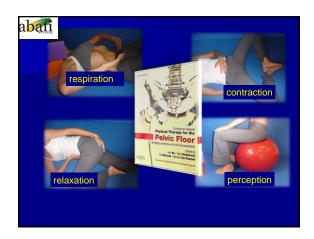

Voluntary contraction can be absent, weak, normal or strong, and voluntary relaxation can be absent, partial or complete.

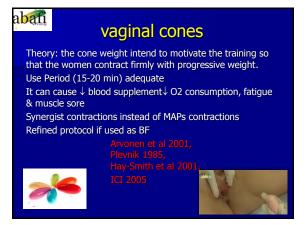
Involuntary contraction and relaxation is absent or present.

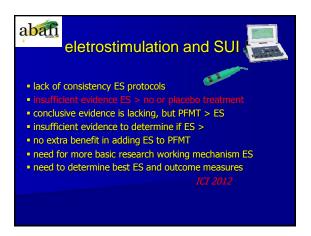

Based on these signs, pelvic floor muscles can be classified as follows:

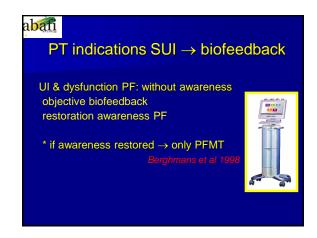
non-contracting pelvic floor
non-relaxing pelvic floor
non-contracting, non-relaxing pelvic floor.

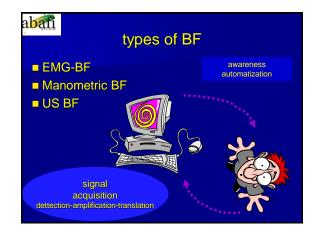
Messelink, Benson and Berghmans
ICS Standartisation

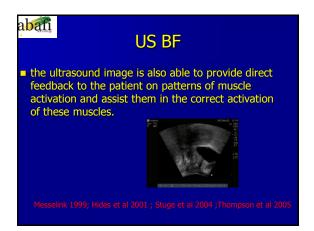


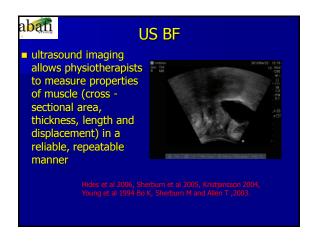


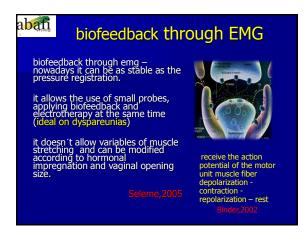


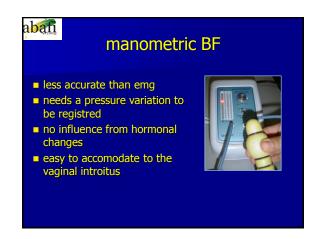


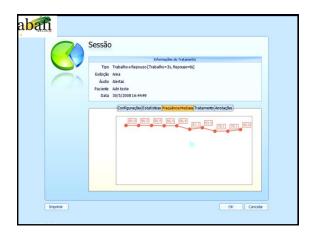


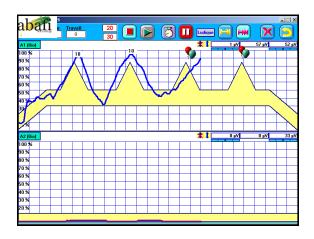


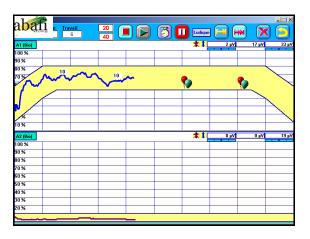


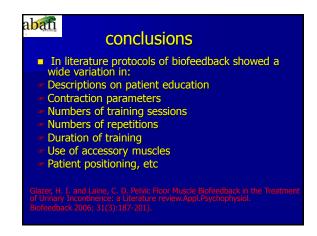


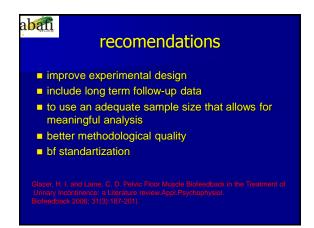




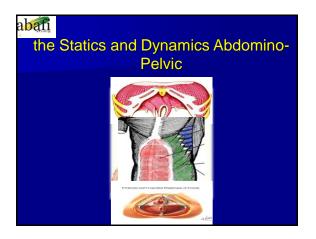


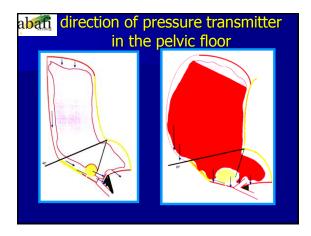


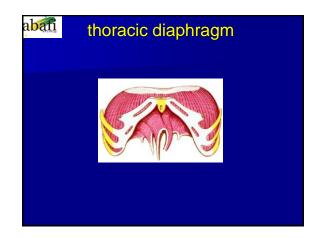


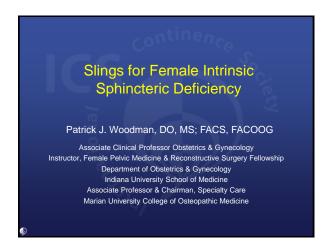


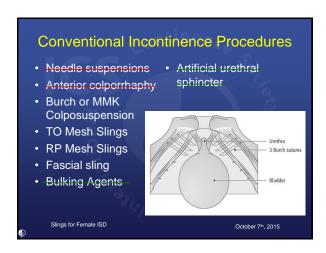
advantages to include BF in the treatment or no side effects or not invasive or active participation of the patient or motivation in the trainning exercises or the learning process offered by the biofeedback or do not limit futur options

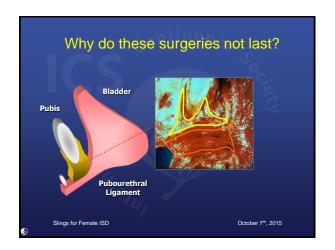


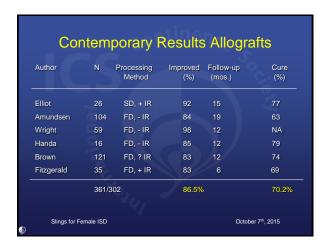


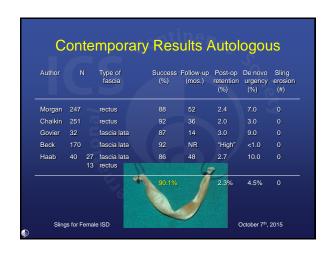












Traditional Suburethral Sling Giordano (1907) reported the first urethral sling McGuire and Lytton (1978) reported a 80% success rate for the "pubovaginal sling" noting an "intrinsic weakness" in the urethral sphincter in 75% of patients who failed multiple incontinence surgeries had 13% in women with no history of surgery Sand (1987) noted a 3-fold increase in Burch failure in a subgroup of patients with MUCP <20cm H₂O Recommend more obstructive procedure McGuire EJ. Lytton B. Pubovaginal sling procedure for stress incontinence. J Urol, 1978; 119.82-84. Sand PK. Bowen LW, Panganiban R, Ostergard DR. The low pressure urethra as a factor in failed retropubic urethropexy. Obstet Gynecol 1987;69:399-402.

Burch vs. Sling?

· SISTEr Trial: Multi-center RCT Burch vs. Sling with autologous fascia (N = 655)

79% F/U at 2y, combo of subjective & objective criteria

- Sling vs. Burch: overall success 47% vs. 38%** (any leak)
- Sling vs. Burch: stress success 66% vs. 49%***
- · Sling patients had more UTI, void dysfunction, DOI
- · Systematic review / Meta-analysis of 13 RCTs Burch and traditional sling (N = 760)
 - · No statistically significant differences b/w traditional slings and other types of sling
 - · Due to low numbers, no direct comparison of women with low urethral resistance or intrinsic sphincteric deficiency
- Albo ME, et al. Burch colposuspension versus fascial sling... NEJM, 2007;356(21):2143-55 Rehman H, Bezerra CA, et al. Traditional suburethral sling... Cochrane Database Syst Rev, 2011;(1):CD001754.

October 7th, 2015 Slings for Female ISD

Burch vs. Sling?

- · RCT of women with ISD: "Modified" Burch vs. suburethral sling (N=36)
 - · Short-term results showed objective and subjective cure rates of 90, 95% for Burch
 - Objective and subjective cure rates for sling 100%
 - · Significantly higher post-operative MUCP in sling grp 39.8 ± 23.0 cm H₂O vs. 16.4 ± 8.2 cm H₂O**
 - Elevation of the lateral supporting tissues of an ISD urethra did not improve urethral resistance
- Sand P, et al. A prospective randomized study comparing modified Burch retropubic urethropexy and suburethral sling for treatment of genuine stress incontinence with low-pressure urethra. Am J Obstet Gynecol. 2000;182:30-4.

Slings for Female ISD October 7th, 2015

Conventional Incontinence Procedures Needle suspensions Artificial urethral

- Anterior colporrhaphy
 - sphincter
- Burch or MMK
- Colposuspension TO Mesh Slings
- RP Mesh Slings
- Fascial sling
- Bulking Agents

Slings for Female ISD

Urothra October 7th, 2015

- 3 Burch suture:

• RP 80.8% objective cure, 62.2% subjective TO 77.7% objective cure, 55.8% subjective

Funk MJ, et al. Incidence and time trends... Obstet Gynecol, 2012;195:845.
Richter HE, et al. Retropubic versus transobturator midurethral slings... NEJM, 2010;322: 2066-76. Slings for Female ISD October 7th, 2015

MUS Introduction

- Number of SUI surgeries have increased since mid-1990s introduction of TVT
 - Reuters Marketscan Commercial Claims & Encounters 2000-09
 - (N = 32.9 Million women aged 18-64) 74 Million person-years
 - 182,110 SUI procedures (246.1/100K person-years)
 - Suburethral sling (198.3/100K person-years) : 37.3% (2000); 89.1% (2009)
 - Burch (25.9/100K person-years): 40.6% (2000); 3.8% (2009)
- · Highly successful at treating SUI, can be introduced via a top-down or bottom-up RP approach, or an inside-out or outside-in TO approach (TOMUS, N=597)

Traditional Sling vs. MUS?

- Multicenter, RCT of Autologous fascia sling, TVT and Pelvicol sling (N = 72, 79, 50)
 - Pelvicol poor results at 6mo, 1y (73%, 61% improved, 22% dry)
 - At 6mo, improved: AFS 95%, TVT 92% (NS)
 At 1y, improved: AFS 90%, TVT 93% (NS)

 - At 1y, dry: AFS 48%, TVT 55% (NS)
 - AFS took 20m longer, had higher CISC rates (9.9 vs. 1.5%)
- Systematic review / Meta-analysis of 39 RCTs comparing Burch, AFS sling and MUS
 - Patients undergoing AFS & MUS had similar cure rates*
 - AFS had more LUTS & Higher Re-operation Rate*
 - Retropubic MUS had slightly higher continence rates vs. Burch
 - Retropubic MUS had higher complication rate (bladder perf)
- Guerrero KL, et al. A randomised controlled trial comparing TVT... BJOG, 2010;117:1493-1503. Novara G, et al. Updated systematic review and meta-analysis... Eur Urol, 2010;58:218-38.

Slings for Female ISD

October 7th, 2015

TVT vs. ISD?

- Retrospective sample of a prospective, mul cohort, followed-up at 4 years (N=49):
 - 74% completely cured
 - 12% significantly improved
 - 14% not cured: majority >70 yo or MUCP <10cm H₂O
- · Some experts advise omitting the ¼ inch gap subscribed when placing the TVT in women with ISD:
 - Tape placed touching urethra (still without tension)
- · Retrospective cohort of women with ISD treated with TVT (N=35):
 - Strict definition of ISD: MUCP < 20cm H₂O & VLPP < 60cm H₂O
 - High success rate of 91.4% at 1y
 - 2 of 3 failures had a "fixed urethra"
- Rezapour M, et al. Tension-Free vaginal tape (TVT) in stress-... Int Urogynecol J, 2001;12:S12-14. Ghezzi F, et al. Tension-free vaginal tape for the treatment of... Int Urogynecol J, 2006; 17:335–339.

Slings for Female ISD October 7th, 2015

TOT vs. ISD?

- Retrospective cohort of women undergoing TOT, divided into three treatment groups, F/U at 1 and 2y (N=35):
 - ISD with UH (G1): 96.1% and 87.5%
 - ISD w/o UH (G2): 66.7% and 66.7%
 - UH w/o ISD (G3): 96.6% and 96.4%
 - Lack of UH a "risk factor" for TOT failure
- One-year F/U of TOMUS, RCT of wome w/ SUI randomized to TOT or TVT (N=59) Examined a subgroup of women who "Failed" Obj. or Subj.

 - Women in lowest Quartile of MUCP (< $45 \text{cm H}_2\text{O}$) or VLPP (< $86 \text{cm H}_2\text{O}$) had a $2 \cdot \text{fold}$ increase OR of failure (OR 1.88, 2.23)
- Haliloglu B, et al. The role of urethral hypermobility and... Int Urogynecol J (2010) 21:173–178. Nager CW, et al. Baseline urodynamic predictors of treatment failure 1 year after mid urethral sling surgery. J Urol, 2011;186:597-603.

Slings for Female ISD

October 7th, 2015

Best MUS for ISD? TVT vs. TOT

 Retrospective cohort of women comparing RP approach (TVT) to the TO approach (Monarc) (N=145):

(Note: MUCP of < 20cm H2O exclusion for TOT group)

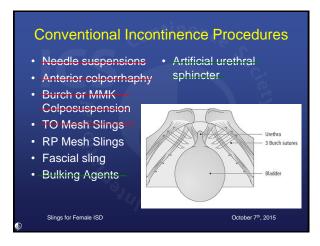
- Monarc was nearly 6 times more likely to fail at 3 months after surgery in women with borderline MUCP (42 cm H2O or less)
- Success: (Obj.) RP 97% vs. 91% TO, (Subj.) RP 86% vs. 84% TO
- Low MUCP: (O) RP 97% vs. 84%** TO, (S) RP 87% vs. 77%**
- Prospective, RCT of women with USI and ISD, assigned to TVT or TOT, and F/U over three years (N=164):
 - Major outcome was recurrent symptomatic SUI requiring surgery
 - TVT 1.4% vs. TOT 20%; RR15.0*** (95% CI 2-113)
- Overall success rates TVT 83.7% vs. TOT 72%**
- Miller, et al. Is trans-obturator tape as effective as tension... Am J Obstet Gynecol, 2006;195:1799-804.
 Schierlitz L, et al. Three-year follow-up of Tension-Free Vaginal... Obstet Gynecol, 2012;119:321-7.

Slings for Female ISD October 7th, 2015

Best Overall Sling?

- Retrospective cohort of women with USI and ISD placed in one of 3 groups (N=256):
 - PVS (N=87), TVT (N=94) and TOT (N=72)
 - ISD Definition < 20cm H₂O MUCP or < 60cm H₂O VLPP
 - 2 Year Cure Rates: 87.2%, 86.9%, 34.9% - 7 Year Cure Rates: 59.1%, 55.1%, N/M
- Inelastic RP MUS in women with ISD (N=247)
 - 87.4% subjective improvement, 7.2% retension, 7.7% reintervent
- Retrospective cohort of women with recurrent USI or ISD, treated with an adjustable sling (N=125):
 - 87% cured, 13% not
- Of those, 7% declined intervention

Jeon MJ, et al. Comparison of the treatment outcome of pubovaginal ... AJOG, 2008;199:76.e1-76.e4 Jijon A, et al. An inelastic retropubic suburethral sing in. ... Int Urogyneco J. 2013; 24:1325–1330. Errando C, et al. A Re-Adjustable sing for female... Neurourol Urodynam, 2010; 29:1429–143.


Slings for Female ISD October 7th, 2015

Typical Complications

Complications	PVS (n=87)	TVT (n=94)	TOT (n=72)	P value
Bladder injury	1 (1.2%)	0	0	0.6
De novo urgency	14 (16%)	14 (15%)	13 (18%)	0.9
Voiding dysfunction (one month or longer)	18 (19%)	17 (18%)	8 (11%)	0.75
V.D. Requiring surgery	0	3 (3.1%)	1 (1.4%)	0.26
Recurrent UTI	2 (2.3%)	6 (6.4%)	0	0.06
Mesh Erosion	-	1 (1.1%)	1 (1.4%)	1

1. Jeon MJ, et al. Comparison of the treatment outcome of pubovaginal... AJOG, 2008;199:76.e1-76.e4. October 7th, 2015

Slings for Female ISD

References

- McGuire EJ, Lytton B. Pubovaginal sling procedure for stress incontinence. J Urol, 1978; 119:82-84.

- McGuire EJ. Lytton B. Pubovaginal sling procedure for stress incontinence. J Urol, 1978; 119:82-84. Sand PK. Bowen LW, Panganithan R, Ostergard DR. The low pressure urethra as a factor in failed retropubic urethropexy. Obstet Gynecol, 1987;69:399-402.

 Albo ME, et al. Burch colposuspension versus fascial sling... NEJM, 2007;356(21):2143-55.

 Rehman H, Bezerra CA, et al. Traditional suburethral sling operations for urinary incontinence in women. Cochrane Database Syst Rev, 2011;(1):CD001754.

 Sand P, et al. A prospective randomized study comparing modified Burch retropubic urethropexy and suburethral sling for treatment of genuine stress incontinence with low-pressure urethra. Am J Obstet Gynecol, 2000;182:30-4.
- GyneLiv, 2001, 162:30-4.

 Funk MJ, Levin PJ, Wu JM. Incidence and time trends in the surgical management of stress urinary incontinence. Obstet Gynecol. 2012;119(4):845.

 Richter HE, et al. Retropubic versus transobturator midurethral slings for stress incontinence. NEJM, 2010;322, 2066-76.
- 2010;322; 2066-76.

 Guerrero K.L. Emery S.J. Wareham K, Ismail S, Watkins A, Lucas MG. A randomised controlled trial comparing TVT, Pelvicol and autologous fascia slings for the treatment of stress urinary incontinence in women. BUOG, 2010;117:1493-1503.

 Novara G, et al. Updated systematic review and meta-analysis of the comp-arative data on colposuspensions, pubovaginal slings, and midurethral tapes in the surgical treatment of female stress urinary incontinence. Eur Urol, 2010;58:218-38.

 Rezapour M, et al. Tension-Free vaginal tape (TVT) in stress incontinent women with intrinsic sphincter deficiency (ISD)—a long-term follow-up. Int Urogynecol J. 2001;12:S12-14.

Slings for Female ISD

October 7th, 2015

References

- Ghezzi F, et al. Tension-free vaginal tape for the treatment of unodynamic stress incontinence with intrinsic sphinicteric deficiency. Int Urogynecol J. 2006. 17: 335–339. Halliogia B, et al. The role of urenthal hypermobility and intrinsic sphinicteric deficiency on the outcome of transobrurator tape procedure: a prospective study with 2-year follow-up. Int Urogynecol J (2010) 21:173–178.
- Nager CW, et al. Baseline urodynamic predictors of treatment failure 1 year after mid urethral sling surgery. J Urol, 2011;186:597-603. Miller, et al. Is trans-obturator tape as effective as tension-free vaginal tape in patients with a borderline maximal urethral closure pressure? Am J Obstet Gynecol, 2006 Dec;195(6):1799-804.
- Schierlitz L, et al. Three-year follow-up of Tension-Free Vaginal Tape compared with Transobturator Tape in women with stress urinary incontinence and intrinsic sphincter deficiency. Obstet Gynecol, 2012;119:321-7.
- Jeon MJ, et al. Comparison of the treatment outcome of pubovaginal sling, tension-free vaginal tape, and transobturator tape for stress urinary incontinence with intrinsic sphincter deficiency. AJOG, 2008;199:76.4-76.e4.
- 2000, 1997-08-17-08-94. Jijion A, et al. An inelastic retropubic suburethral sling in women with intrinsic sphincter deficiency. Int Urogynecol J, 2013; 24:1325–1330. Errando C, et al. A Re-Adjustable sling for female recurrent stress incontinence and sphincteric deficiency. Outcomes and complications in 125 patients using the Remeex sling system. Neurourol Urodynam, 2010; 29:1429–143.

Slings for Female ISD October 7th, 2015

Notes